首页 >> 精选百科 >

超导概念(超导概念股票)

2022-05-06 06:59:46 来源: 用户: 

  

  超导是某些金属或合金在低温条件下出现的一种奇妙现象,是由荷兰的物理学家卡麦林·昂纳斯最先发现的。

  1908年,昂纳斯 1853—1926年成功地液化了地球上最后一个“永久气体”——氦气,得到了接近绝对零度 0K=-273.15℃的低温:4.25K~1.15K。之后,他把目标转向了“极低温下金属电阻随温度变化规律的研究”。昂纳斯先是用铂丝,接着用纯度更高的水银做实验,他吃惊的发现水银在温度降至氦的沸点即4.2K时 相当于-269℃,电阻竟意外地消失了。起初昂纳斯还以为是线路出现了故障,几经测定,最后他确信,水银在4.2K下会产生一种新的导电特性——“零电阻性’或“超导电性”。1911年4月28日,昂纳斯公布了这一发现,并在随后几篇论文中明确指出,某些材料在一定温度下能进入一种电阻为零的新物态。他将这种新物态命名为“超导态”,同时把具有从正常态 电阻不为零转变为超导态能力的材料称作“超导体”,把能使超导体从正常导电状态变为超导电状态时的转变温度称为“临界温度”。他进一步用铅环做实验,当铅变为超导态时,九百安培的电流在铅环中流动不止,两年半以后毫无衰减。

  昂纳斯的这一发现轰动了全世界的科学家,大家纷纷实验,并且想要揭开超导的奥秘,因为只有了解了超导现象的微观机理,才能使超导为人类作出更大的贡献。

  现在,科学家已发现有上千种元素和化合物在低温下可以转化为超导态。对所谓“零电阻性”也已有共识:超导体即使有电阻,它的电阻率必然小于10-26“欧·米,而且只对直流电适用,若给超导体通入交流电,它仍会出现类似于常规电阻的“交流损耗”。从这个意义上讲,超导体似乎可以说是一种直流理想导体。

  

  首先,说明超导只是一个定语,所以,只能以超导性来解释超导一词。

  以下为超导性的官方名词解释:温度和磁场都小于一定数值的条件下,导电材料的电阻和体内磁感应强度都突然变为零的性质。具有超导性的物体称“超导体”。1911年荷兰物理学家卡末林一昂内斯首先发现汞在液氦温度 4.2开下失去电阻的现象,并称之为“超导性”。物体从正常态过渡到超导态时的温度称为此超导体的“转变温度” 或“临界温度”。1933年德国物理学家迈斯纳 Fritz Walther Meissner,1882—1974和奥森费耳德 RobertOchsenfeld,190l—1993又共同发现金属处在超导态时体内磁感应强度为零,即能把原来在其体内的磁场排挤出去,这个现象称“迈斯纳效应”。当磁场达到一定强度时,超导性就将破坏,这个磁场限值称“临界磁场”。超导体在电工学和电子学方面都有很大的应用价值,但由于需要液氦条件,因此使用受到限制。1986年底以后,发现了氧化物超导体,临界温度约可达90~130开,实现了能在液氮 77开温度稳定工作的超导材料,引起全世界的关注,此类材料称“高温超导”。现正继续寻找可在室温附近工作的超导体。

  

  

怎么能理解,就是超导体,和普通导体不一样

  

一般来说,导体有电阻,电阻会消耗电能

  

超导性,顾名思义,不同于普通导体

  

也就是说,在一定温度下,导体显示的电阻为0

  

叫做超导。它可以节约电能,对输电线路等有帮助

  

  

  

  

如果您有任何问题,请接受[谢谢

  

  超导体

  1911年,荷兰科学家昂内斯(Ones)用液氦冷却汞,当温度下降到4.2K时,水银的电阻完全消失,这种现象称为超导电性,此温度称为临界温度。根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料。但这里所说的「高温」,其实仍然是远低于冰点摄氏0℃的,对一般人来说算是极低的温度。1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。经过科学家们的努力,超导材料的磁电障碍已被跨越,下一个难关是突破温度障碍,即寻求高温超导材料。

  1973年,发现超导合金――铌锗合金,其临界超导温度为23.2K,这一记录保持了近13年。

  1986年,设在瑞士苏黎世的IBM公司的研究中心报道了一种氧化物 镧钡铜氧化物具有35K的高温超导性。此后,科学家们几乎每隔几天,就有新的研究成果出现。

  1986年,贝尔实验室研究的超导材料,其临界超导温度达到40K,液氢的“温度壁垒” 40K被跨越。

  1987年,华裔科学家朱经武以及科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的“温度壁垒” 77K也被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临界超导温度提高了近100K。

  来自德国、法国和俄罗斯的科学家利用中子散射技术,在高温超导体的一个成员单铜氧层Tl2Ba2CuO6+δ中观察到了所谓的磁共振模式,进一步证实了这种模式在高温超导体中存在的一般性。该发现有助于对铜氧化物超导体机制的研究。

  高温超导体具有更高的超导转变温度 通常高于氮气液化的温度,有利于超导现象在工业界的广泛利用。高温超导体的发现迄今已有16年,而对其不同于常规超导体的许多特点及其微观机制的研究,却仍处于相当“初级”的阶段。这一点不仅反映在没有一个单一的理论能够完全描述和解释高温超导体的特性,更反映在缺乏统一的、在各个不同体系上普遍存在的“本征”实验现象。本期Science所报道的结果意味着中子散射领域里一个长期存在的困惑很有可能得到解决。

  早在1991年,法国物理学家利用中子散射技术在双铜氧层YBa2Cu3O6+δ超导体单晶中发现了一个微弱的磁性信号。随后的实验证明,这种信号仅在超导体处于超导状态时才显著增强并被称为磁共振模式。这个发现表明电子的自旋以某种合作的方式产生一种集体的有序运动,而这是常规超导体所不具有的。这种集体运动有可能参与了电子的配对,并对超导机制负责,其作用类似于常规超导体内引起电子配对的晶格振动。但是,在另一个超导体La2-xSrxCuO4+δ 单铜氧层中,却无法观察到同样的现象。这使物理学家怀疑这种磁共振模式并非铜氧化物超导体的普遍现象。1999年,在Bi2Sr2CaCu2O8+δ单晶上也观察到了这种磁共振信号。但由于Bi2Sr2CaCu2O8+δ与YBa2Cu3O6+δ一样,也具有双铜氧层结构,关于磁共振模式是双铜氧层的特殊表征还是“普遍”现象的困惑并未得到彻底解决。

  理想的候选者应该是典型的高温超导晶体,结构尽可能简单,只具有单铜氧层。困难在于,由于中子与物质的相互作用很弱,只有足够大的晶体才可能进行中子散射实验。随着中子散射技术的成熟,对晶体尺寸的要求已降低到0.1厘米3的量级。晶体生长技术的进步,也使Tl2Ba2CuO6+δ单晶体的尺寸进入毫米量级,而它正是一个理想的候选者。科学家把300个毫米量级的Tl2Ba2CuO6+δ单晶以同一标准按晶体学取向排列在一起,构成一个“人造”单晶,“提前”达到了中子散射的要求。经过近两个月散射谱的搜集与反复验证,终于以确凿的实验数据显示在这样一个近乎理想的高温超导单晶上也存在磁共振模式。这一结果说明磁共振模式是高温超导的一个普遍现象。而La2-xSrxCuO4+δ体系上磁共振模式的缺席只是“普遍”现象的例外,这可能与其结构的特殊性有关。

  关于磁共振模式及其与电子间相互作用的理论和实验研究一直是高温超导领域的热点之一,上述结果将引起许多物理学家的关注与兴趣。

  20世纪80年代是超导电性的探索与研究的黄金年代。1981年合成了有机超导体,1986年缪勒和柏诺兹发现了一种成分为钡、镧、铜、氧的陶瓷性金属氧化物LaBaCuO4,其临界温度约为35K。由于陶瓷性金属氧化物通常是绝缘物质,因此这个发现的意义非常重大,缪勒和柏诺兹因此而荣获了1987年度诺贝尔物理学奖。

  1987年在超导材料的探索中又有新的突破,休斯顿大学物理学家朱经武小组与科学院物理研究所赵忠贤等人先后研制成临界温度约为90K的超导材料YBCO 钇铋铜氧。

  1988年初研制成临界温度达110K的Bi-Sr-Ca-Cu-O超导体。至此,人类终于实现了液氮温区超导体的梦想,实现了科学史上的重大突破。这类超导体由于其临界温度在液氮温度 77K以上,因此被称为高温超导体。

  自从高温超导材料发现以后,一阵超导热席卷了全球。科学家还发现铊系化合物超导材料的临界温度可达125K,汞系化合物超导材料的临界温度则高达135K。如果将汞置于高压条件下,其临界温度将能达到难以置信的164K。

  1997年,研究人员发现,金铟合金在接近绝对零度时既是超导体同时也是磁体。1999年科学家发现钌铜化合物在45K时具有超导电性。由于该化合物独特的晶体结构,它在计算机数据存储中的应用潜力将是非常巨大的。

  为了证实 超导体电阻为零,科学家将一个铅制的圆环,放入温度低于Tc=7.2K的空间,利用电磁感应使环内激发起感应电流。结果发现,环内电流能持续下去,从1954年3月16日始,到1956年9月5日止,在两年半的时间内的电流一直没有衰减,这说明圆环内的电能没有损失,当温度升到高于Tc时,圆环由超导状态变正常态,材料的电阻骤然增大,感应电流立刻消失,这就是著名的昂尼斯持久电流实验。

  

  

半导体是指常温下导体和绝缘体之间具有导电性的材料

超导体是一种在一定温度下电阻几乎完全消失的材料(在仪器测量精度范围内,电阻为零)

  

  就是在现在的测量基础下,通电后电流表的读数恒久不出现变化...

  电阻为零的情况是根本不可能存在的,电阻为零仅仅是因为它的损失太少,以至于检测不出来...

  否则竞赛上就不会有求在超导条件下电阻丝的电阻率了...

  个人理解,应该是对的...

  免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!

 
分享:
最新文章